VALIDATION OF ADVANCED FLIGHT SIMULATORS FOR OPERATIONAL EVALUATION AND TRAINING PROGRAMS

OCTOBER 12, 2002

Briefing prepared by: Dr. A. E. Dillard
Federal Aviation Administration
National Resource Specialist, Simulation Engineering, AFS-408
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Definitions:
 - Simulator - A flight training device with full six-degree of freedom motion system, a visual system that meets FAA Level D requirements and meets performance standards of AC 120-40.
 - Operational Evaluation Program - Test programs to support operational or equipment approval conducted in a realistic operational environment using advanced flight simulators.
 - Aircraft Data Base - Aircraft performance data base representing flight test data from the aircraft manufacturer.
 - Simulator Approval - Granting approval or certification for a simulator device meeting the requirements of FAA AC 120-40 or ICAO equivalent.
• Types of Simulation
 - Full Flight Simulators - Levels A thru D
 - Training Devices - Levels 1 thru 7
 - Part Task Simulators
 - Laboratory Simulators
 - Unmanned Integrated Modeling
 - Mathematical Modeling
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• History of Flight Simulators
 - World War II
 - Application to Civilian Pilot Training
 - Development of Computers
 - Development of Motion Bases
 - Development Of Visual Systems
 - Advanced Simulator Program in 1970s
 - Application of Actual Aircraft Performance Data Bases
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Uses of Full Flight Simulators
 – Advanced Training Program
 • Level A thru D
 • Level D requires no Aircraft flight time for transition training with approved training program
 • Aircraft and systems modeling to highest level of fidelity possible – no effort to model pilot
 • Attributes – Discussion
 • Operation Evaluation Programs
 • Networking
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Simulator Costs
 - Approximately $14M for Level D Device
 • Includes:
 - Spares
 - Training
 - Tolls and Test Equipment
 - Instructors/Operators Facilities
 - HLA/DIS Compatible
 - Delivery/Installation/Certification
 - Warranty
• Issues for Using Simulators for Operational Evaluation Programs
 - Flight performance fidelity throughout flight envelope under test
 - Systems Fidelity
 - Realistic environmental conditions
 - Realistic faults/failures
 - Realistic operating environment
 - Realistic pilot workload
• Primary drivers for operational evaluation programs
 - New equipment certification and operational approval
 - New procedures - closely spaced runways, land and hold short, increased system through-put
 - New Air traffic procedures and rules
 - New airport design and infrastructure
 - Testing for operating environment phenomena
• Pilots as test subjects
 - System is set up to define minimum pilot performance requirements
 - Highly trained and retrained
 - Select group – changing in civil world
 - Cadre of pilot test subjects must be representative of pilot population at large
 - age distribution, current in aircraft type, line pilot.
 - Active to age 60 - then forced to retire under current law
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Validation of aircraft flight performance
 - Advanced simulator program ensures performance against known aircraft data
 - Confirmed by objective comparison of plotted performance variables plus expert subjective testing
 - Advanced simulators checked twice annually against selected maneuvers
 - Includes visual, motion and throughput/latency testing
Qualification Test Guide

Initial Conditions

Mass Properties/Configuration

- Gross Weight: 49,846 Lb
- Empty Weight: 20,950 Lb
- Lavatique Co. G.: 0.51 ft³
- FM Height of Center of Gravity: 122.69 ft
- FM Height of Center of Gravity: 37.68 ft
- Distance from CG to FM: 42.68 ft
- Wing Load: 57.25 Lb/ft²
- Flap Position: 14.52°
- Landing Gear Position: Down

Position: Thrust/Control PNL

Rules & Aero Angles/Modes/Accelerations

- Pitch Angle: 0.00°
- Roll Angle: 0.00°
- Heading Angle: 0.00°
- Angle of Sideslip: 0.00°
- Body Axis Roll Rate: 0.00 deg/sec
- Body Axis Pitch Rate: 0.00 deg/sec
- Body Axis Yaw Rate: 0.00 deg/sec

Engines

- Engine #1 Controller FA: 78.90 Lb
- Engine #2 Controller FA: 78.90 Lb
- Engine #3 Controller FA: 78.90 Lb
- Engine #4 Controller FA: 78.90 Lb
- Engine #1 Torque: 90.00 %
- Engine #2 Torque: 90.00 %
- Engine #3 Torque: 90.00 %
- Engine #4 Torque: 90.00 %
- Engine #1 Propeller Speed: 1199.90 RPM
- Engine #2 Propeller Speed: 1199.90 RPM
- Engine #3 Propeller Speed: 1199.90 RPM
- Engine #4 Propeller Speed: 1199.90 RPM
- Engine #1 Statfed Flag: On
- Engine #2 Statfed Flag: On

Closed-Loop Controllers

- Pitch Axis: Inactive
- Roll Axis: Inactive
- Yaw Axis: Inactive

Speed/Altitude/Aerodynamics

- Calibrated Airspeed: 58.28 Kts
- Mach Number: 0.00
- Ground Speed: 86.23 Kts
- True Airspeed: 1.00 Deg
- Pressure Altitude: 30000 ft
- Static Pressure: 29.92
- Dynamic Pressure: 60000 ft
- Inertial Elevator: 0.00
- Inertial Acceleration: 0.00
- Wind Direction: 290.00 Deg

Flight Controls and Surfaces

- Colored Surface: (VAB)
- Left Elevator Deflection (VAB): 0.00 Deg
- Right Elevator Deflection (VAB): 0.00 Deg
- Left Aileron Deflection (VAB): 0.00 Deg
- Right Aileron Deflection (VAB): 0.00 Deg
- Left Flap Deflection (VAB): 0.00 Deg
- Right Flap Deflection (VAB): 0.00 Deg
- Pedal Position (VAB): 0.00 Deg
- Brake Pedal Position: 0.00
- Throttle Pedal Position: 0.00

Aircraft Control Status

- Colored Controller: (VAB)
- Brake Pedal: Inactive
- Throttle Pedal: Inactive
- Pedal Pedal: Inactive

4.1.2.3 - Minimum Unstick Speed

Flap 15, Gear DOWN

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>2022-09-29 16:15:15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result Type</td>
<td>Auto Driven</td>
</tr>
<tr>
<td>Airline/Operator:</td>
<td>CAT - Roosev</td>
</tr>
<tr>
<td>Reference:</td>
<td>10014090, pages 1/3 to 3</td>
</tr>
</tbody>
</table>
VALIDATION OF ADVANCED FLIGHT SIMULATORS

Graphs and Data

- **Calibrated Airspeed (kts)**
- **Pressure Altitude (ft)**
- **Pitch Attitude (deg)**

Legend

- Reference Data
- CAS Simulator Data

4.2.C.1 - Power Change Dynamics

Flaps 15, Gear UP

Date & Time: 2002-Jul-25 16:09:49
Result Type: Auto Driven
Airline/Operator: CAT - Maastricht
Simulator: ATR 72-500 STF
Reference: SO0214500, pages 2c(1)-1 to 3
(Airbus ATR 72-500 Aerospatiale Flight Test Data)
VALIDATION OF ADVANCED FLIGHT SIMULATORS

Calibrated Airspeed (kts)
Tolerance: +/-3 kts

Pitch Attitude (deg)
Tolerance: +/-1.5 deg

Reference Data
--- CAE Simulator Data

4.1.B.3 - Minimum Unstick Speed
Flap 15, Gear DOWN

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Result Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-Sep-09 16:15:55</td>
<td>Auto Driven</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airline/Operator</th>
<th>Simulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT - Maastricht</td>
<td>ATR 72-500 STF</td>
</tr>
</tbody>
</table>

Reference: S00214500, pages 1b(3)1-1 to 3 (ATR 72-500 Aerospatiale Flight Test Data)
VALIDATION OF ADVANCED FLIGHT SIMULATORS

Angle of Attack (deg)

Left Elevator Deflection (deg)

Reference Data

4.1.B.3 - Minimum Unstick Speed
Flap 15, Gear DOWN

Date & Time: 2002-Sep-09 16:15:55
Result Type: Auto Driven
Airline/Operator: CAT - Maastricht
Simulator: ATR 72-500 STF
Reference: S00214500, pages 1b(3)1-1 to 3
(ATE 72-500 Aerospatiale Flight Test Data)
• Systems Validation
 - Navigation performance tested as part of approval process against terminal area geographical data base (Runway positioning and visual scene)
 - On commercial simulators you must confirm en-route geo positioning
 - Must validate specific system fidelity if critical to current evaluation
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• System Modeling
 - Uses actual equipment manufacturers design data
 - Emulation (uses actual aircraft display software with non-airworthy hardware) of flight deck displays preferred to simulated instruments if actual aircraft hardware not used.
 - May need to develop test plan to test specific critical systems
VALIDATION OF ADVANCED FLIGHT SIMULATORS

- Distributed Interactive Simulation
 - Commercial simulators generally not HLA compliant
 - Much less data typically transferred than with military DIS
 - Simulators manufactured to different hardware specs
 - Extremely price competitive - Hence, few bells and whistles
 - Little interest for normal training requirements
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Typical Operational evaluation programs
 - Low visibility operations
 - New technology
 - New procedures
 - Airport Infrastructure
 - New airport designs
 - Navigation
 - Communications
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Analysis of results
 – Collect data on critical performance variables
 • Attitude
 • Airspeed
 • Altitude
 • Three dimensional track data (X, Y, Z or Lat/Long)
 • Monitor for pilot actions
 • Video
 • Audio
Advantages of using advanced flight simulators
- Collaborative research environment
- High fidelity operational environment
- Low risk to equipment and personnel
- Much cheaper than actual aircraft
- Better control of test environment
- Scenario repeatability
- Equipment availability
- Ability to modify and manipulate system performance through software
- Ability to network
- Data collection capabilities
• Disadvantages of using approved advanced simulators
 - Cheaper than aircraft but still costly ($300 to $1200 flight hour
 - Limited availability
 - Requires expert technical support
 - Can require special system validation
 - Changes to hardware and software on approved simulators cannot affect approved performance or equipment configuration
 - Must compete with training programs for time
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Examples of a recent program
 - Laser Visual Interference
 • Worked with Brooks AFB Labs, FDA, Others
 • Worked with Laser industry
 • Supported by SAE G-10 HBET Committee to provide technical oversight and expert guidance
 • Used live laser coupled via fiber optic cable to cockpit
 • Illuminated pilot at critical junctures in typical flight operations in the terminal airspace
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Laser - Continued
 - Approximately 40 pilots tested
 - Three levels of exposure

• Results
 - New standards for use of lasers in commercial airspace
 - New Advisory Circular for education of FAA and pilot community
 - Used to develop new international (ICAO) standards
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• New Technology on the Flight Deck
 - Head-Up Display
 - Cockpit display of traffic information
 - Multi-function displays
 - ADS-B
 - Data link communications
 - Hazard avoidance/detection
 - Navigation - GPS, LAAS, WAAS
 - Communications
 - Fly-by-wire technology
• Airport Design and Infrastructure
 - New Denver Airport
 - Approach lighting
 - High-speed exits
 - Markings and signage
 - Land and Hold Short operations
 - Runway incursions
 - Contaminated runways
 - Over-run protection
VALIDATION OF ADVANCED FLIGHT SIMULATORS

• Environmental Phenomena
 - Wake Vortex
 - Icing
 - Unusual attitudes
 - Low visibility operations
 - Wind shear detection and recovery
• Summary –
 – Open, collaborative test environment
 – Enhanced data collection capabilities
 – Serve as a bridge between the laboratory and the aircraft
 – Widely distributed geographically
 – Lower risk than using actual aircraft
 – Repeatability
Summary - Continued

- Advanced simulators available for virtually all commercial aircraft
- More cost effective than using actual aircraft
- Lower operating cost - $300 to $1200/hr, than actual aircraft (Typically 1/10 th the cost)
- Offer a high fidelity, realistic operating environment
- Able to modify software and hardware within defined constraints