SEDRIS: Does it make sense as a model for HBR?

June 19, 2001
Topics

- What is SEDRIS - a quick overview
- How & when did we start (motivation and timing)
- Small team, big ideas
- Technical challenges, business challenges
- The tough problems
- Key milestones through the years
- SEDRIS today
- Issues in human behavior representation and modeling
- What lessons can be used
Primary Aspects of SEDRIS (technical)

• An infrastructure technology for expressing and sharing environmental data

• Unambiguous representation of environmental data
 - Semantics and relationships of data elements
 - All environmental domains
 - Expressed in a data representation model

• Efficient interchange of environmental data
 - Sharing and re-use
 - Ease of access and software development (API)
 - Tools and applications
Technical Objectives

• Articulate and capture the complete set of data elements and associated relationships needed to fully represent environmental data
 - Data Representation Model (DRM)
 - Environmental Data Coding Specification (EDCS)
 - Spatial Reference Model (SRM)

• Provide a standard interchange mechanism to pre-distribute environmental data and promote database reuse among heterogeneous applications
 - Software interface specification (API)
 - SEDRIS Transmittal Format (STF)

• Support the full range of applications across all environmental domains (terrain, ocean, atmosphere, and space) and 3-D models
Technology Components of SEDRIS

- **Data Representation Model (DRM):** Provides syntax and structural semantics for representing environmental data and databases (the “grammar” of the language)

- **Environmental Data Coding Specification (EDCS):** Provides “thing” level semantics (the dictionary of the language) (classify/attribute scheme)

- **Spatial Reference Model (SRM):** Unified and robust description of the spatial reference systems (coordinate systems), along with an accurate, efficient, and fast software implementation

- **Software Interface Specification:** (Read and Write Application Programmer Interfaces (APIs))
 - Allows ease of access
 - Lowers the barrier-to-entry in software development

- **SEDRIS Transmittal Format (STF):** Platform independent storage and transmission of data
Primary Aspects of SEDRIS (business)

- A technology base for reducing data access cost, saving development cost, and improving business efficiency
- A platform for leveraging existing products, value-adding and accessing current data sets, creating new products, or building on the core technologies
- A structured method for describing and communicating environmental data requirements/needs
- A community and an open forum for exchanging and sharing ideas and concepts
- Promoting innovation and business growth through open standards
Business Objectives

- Enable and promote interoperability
- Shift the business focus from “competing to dominate based on infrastructure” to “competing to provide the best value-added or most cost-effective content”
- Expand the commercial business base by providing innovative and practical solutions
- Support existing projects and applications through reuse
- Offer solutions only when there is a clear gain
How SEDRIS Technologies are Applied

Use:

- **the DRM** to model environmental data
- **the DRM, EDCS, and the SRM** to specify environmental database content
- **the EDCS** as a stand alone component
- **the SRM** as a stand alone component
- **all SEDRIS technology components** as an interchange mechanism
- **SEDRIS tools** to examine environmental data
- **SEDRIS Technologies** as a base to develop new tools
The Conditions - The Motivation

- Very high database development costs
- Database reuse costs in several hundred thousands
- No support for expressing semantics - highly visual system driven
- Database reuse non-existent in practice
- Interoperability of networked systems costly and nearly impossible to achieve - environmental database creation and interchange a large source of problems
- Industry not motivated to take action
- Past efforts to rectify the situation only partially successful
- Efforts to energize existing projects or industry to take on the task failed
Timing

- Early 90’s: based on 80’s experience, high potential and promise for use of heterogeneous networked systems
- Nearly two years of effort to expand existing projects to take on (“own”) and solve the problem
- The idea for “SEDRIS” initiated in May 1994, work began in September ‘94
- In response to interchange deficiencies faced by STRICOM and DARPA’s projects
- Started as an effort to “fix” data interchange problem so we can then focus on interoperability
- Initially envisioned as a few person-months of effort over a few calendar months!
Small team, big ideas

- A team of six experienced engineers
 - Database, visual, SAF, vehicle simulation, & systems engineers
- Based on a philosophy of practical solutions built on solid technologies and iterative design
- Established guiding principals for development
- Balance between practicality and elegance
- Focus on core design first, dress it up later
- Content before form (or process)
- Favor no domain or application over any other
- Emphasize important but neglected business areas
- Recognize the need for expertise from outside
Technical Challenges

- Can there be one model that accommodates many
- Generalize the result to tackle similar problems, but stay specific enough so users can find their solutions
- Must stay practical - size, speed, efficiency
- Full blown semantics cannot be mandatory, but highly encouraged (through business incentives)
- Design solutions beyond state of the art, 5-10 years
- Cover all the domains of environment
- Support all classes of applications
- Establish a foundation that can be grown without requiring to be rebuilt
- Provide software tools to reduce effort
Business Challenges

• Is it ready for a test drive?!
• Have we thought about (but not done) all the issues - is there a home for different business areas?
• Who knows the requirements? Everybody is in charge!
• Industry vs. government
• How to get buy-in from (a CPFF) industry!
• Market size and volunteer participation (incentives)
• Where do we get the money?!
• Seeding the community
• Changing an established mind set
• Maximum return on minimal investment
• Who cares about infrastructure technologies
Tackling the Requirements

Problem

Very large number of users with both common & unique requirements

The Key: Small number of environmental database builders

(in contrast to environmental data users)
The Tough Problems

• **Get a total set of requirements**
• **Keep commercial processes and proprietary products involved but maintain an open exchange mechanism**

• **Different views of the environment**
 - Air, land, sea, space
 - Spatial location and orientation (coordinate system and datum)

• **Lack of underlying environmental framework**
 - No integrated reference model available
 • Representation
 • Naming/semantics
 - Existing Data Models are conceptual, future models which are non-integrated and don’t address current data repositories and data interchange requirements
Commercial Process Issues

- Proprietary products (are not bad)
- Open exchange (same place) required for interoperability
- Value-added tools and utilities for small product volume
The Development Timeline

- **FY95**
- **FY96**
- **FY97**
- **FY98**
- **FY99**
- **FY00**
- **FY01**
- **FY02**
- **FY03**

R&D Funding

DARPA/STRICOM --- DMSO

DMSO/SEDRIS

SAMs

18, 19, 20, 21

Dev Releases

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

SEDRIS Public Releases

2.0, 2.5.2, 3.0.2, 3.X and on

Data Model

Interface Specification

Transmittal Format

Organization

ISO Standardization

NPs

WDs

FCDs

TRAINING

Technology Conferences

2002

1, 2, 2000, 2001

Experimentation

INT Exps, CCTT, STOW-A, UKCATT, Pegasus, DiMuNDS, 2000, AvCATT, JMASS, EF2000

Other Funding

slide
Within the first nine months...

- Developed the core technology (data representation model) using a small, focused team of experts
- Addressing terrain, atmosphere, and ocean domains
- Unified and articulated the basics of environmental data requirements
- Refined it based on feedback
- Involved the community and key M&S vendors and data providers
 - Seeded the community by targeting industry partners
 - Briefed the community at industry conferences
- Started the project move to DMSO
- Began expanding the core team
Within 18 months ...

- Solicited and selected industry participation through a STRICOM BAA Process
- Established an integrated management team
- Migrated to an object oriented DRM
- Implemented, iterated, & evolved software prototypes
- Web site and internal e-mail lists established
- Outreach (DIS/SIW, I/ITSEC, program briefs, ...)
- Began verification of the DRM through small interchange experiments, conversions, and tools
 - Terrain features (VPF data)
 - 3D models/icons
- Initial assessment of possible formats
Within 36 months …

- Engaged in development through many SEDRIS Associates (and associate meetings (SAMs))
- Refined the DRM and the API
- Completed the design of the format
- Verification through more interchange experiments
- New tools and conversion applications generated
- Outreach (I/ITSEC, DMSO Industry Days, SIW, OGC, …)
- Technology insertion to other programs (WARSIM, JSIMS)
- Began spinning off EDCS & SRM as independent pieces
- Began looking into standardization efforts
- Tools … and more tools …
SEDRIS Today: Mature Technologies

- Focus on standardization and market development
- Develop and conduct more training (Education)
- Establish certification & compliance testing processes
- Expand the marketplace through focused experiments and exercise involvement (Outreach)
- Maintain and configuration manage the interchange mechanism (Infrastructure Support & Sustainment)
- Monitor customer satisfaction
- Implement approved changes based on operational use
Standards Development

Objectives

• "Document technologies as recognized standards"

• "Obtain review, and feedback, from the broader international community"

• "Establish international standards"

• "Promote software implementations:"
 - Software library for the Spatial Reference Model (SRM)
 - Data dictionary database and mapping software for the Environmental Data Coding Specification (EDCS)
ISO / IEC Standards

• **18023: SEDRIS** – multi-part -
 - **Part 1:** SEDRIS Functional Specification (includes the Data Representation Model and the Interface Specification)
 - **Part 2:** SEDRIS Transmittal Format
 - **Part 3:** SEDRIS Transmittal Format Binary Encoding

• **18024: SEDRIS Language Bindings** – multi-part, initially -
 - **Part 4:** SEDRIS Language Binding to ISO C

• **18025: Environmental Data Coding Specification (EDCS)**

• **18026: Spatial Reference Model (SRM)**

• **18041: EDCS Language Bindings** – multi-part, initially -
 - **Part 4:** EDCS Language Binding to ISO C

• **18042: SRM Language Bindings** – multi-part, initially -
 - **Part 4:** SRM Language Binding to ISO C
Participating in ISO / IEC Standards

- SEDRIS standards work assigned to Joint Technical Committee 1 (JTC1) Sub-Committee 24 (SC 24) (Computer Graphics and Image Processing)
- SC 24 established Working Group 8 (WG 8) (Environmental Representation): SEDRIS work started October 1999
- National standards development organizations represent member countries in the ISO / IEC standards development, review, and voting process
- One vote per member country
- For more information see the following web sites:
 - http://www.iso.ch
 - http://www.jtc1.org
 - http://www.bsi.org.uk/sc24
 - http://www.sedris.org/wg8home
Other Standards Activities

- **Simulation Interoperability Standards Organization (SISO)** has established product development groups (PDG) to review, promote, and establish SEDRIS-developed technologies as SISO guidance and/or reference products.

- PDGs working on EDCS and SRM to:
 - Review and input to ISO / IEC standards for EDCS and SRM
 - Adopt existing, and develop new, technical implementations of EDCS and SRM as SISO products

- For more information on SISO PDG activities visit the SISO web site at: http://www.sisostds.org
How the Pieces fit Together

ISO/IEC Standards
1. 18023: SEDRIS Functional Specification
2. 18024: SEDRIS Language Bindings: C
3. 18025: Environmental Data Coding Specification (EDCS)
4. 18026: Spatial Reference Model (SRM)
5. 18041: EDCS Language Bindings: C
6. 18042: SRM Language Bindings: C

SISO Products
Implementation Specific
1. SRM Software
2. EDCS Database and Software
3. EDCS Mapping Documents
4. Reports and Guidance Documents

Tools & Utilities
1. Browser
2. Checker
3. Depth
4. Feature Viewer
5. Model Viewer
6. Netscape Plug-In
7. Ocean Profile
8. SEE-IT
9. Side-By-Side Viewer
10. Wind Map
11. API Implementations & Format conversions
12. Others

Frequent Updates
Non changing or infrequently changing
Commercial & Government Products
Associates and Core Team Roles

- **SEDGIS Associates** (key environmental database developers/users)
 - Review and feedback
 - Data Representation Model
 - Interface Specification (API)
 - Native-model mapping
 - Interchange experiments
 - Value-added tools/utilities

- **Core Team**
 - Manage evolution
 - Data Representation Model
 - Interface Specification (API)
 - Reference implementation(s)
 - Transmittal Format
 - Common tools & applications
Industry Associate Developers ...

- AcuSoft, Inc.
- STN ATLAS Elektronik GmbH
- Boeing
- Charles River Analytics, Inc. (CRA)
- Curl Corporation
- Cybernet Systems Corporation
- ERDAS
- Evans and Sutherland (E&S)
- JRM Enterprises, Inc.
- Indra
- L3 Communications - Link Simulation & Training
- Lockheed Martin Information Systems (LMIS)
- Lockheed Martin Tactical Defense Systems (LMTDS)
- Logicon-TASC
- MultiGen - Paradigm Inc. (MPI)
- Northrup Grumman
- Oktal
- Netherlands Organization for Applied Scientific Research (TNO)
- ProLogic
- Raytheon Systems Company
- Raytheon Training Systems
- Reality By Design Government Systems, LLC (RBD)
- Science Applications International Corporation (SAIC)
- SGI
- Soft Reality, Inc.
- SOGITEC
- TerraSim
- TerrEx
- Thales Training & Simulation (TT&S)
- VCOM3D, Inc.
More Associate Implementers

Government

- U.S. Army Training and Doctrine Command (TRADOC) Mounted Maneuver Battlespace Battle Lab (MMBL) - Ft. Knox
- U.S. Army Communications Electronics Command (CECOM) Night Vision & Electronic Sensors Directorate (NVESD) - Ft. Belvoir
- U.S. Naval Surface Warfare Center - Dahlgren Division
- U.S. Joint Warfare System (JWARS) Joint Program Office / CACI

Academic

- University of Central Florida - Institute for Simulation and Training (UCF - IST)
Other Participating Organizations

- Arteon, Inc.
- BVR Systems Ltd. (Israel)
- Defense Threat Reduction Agency (DTRA)
- Institute for Defense Analyses (IDA)
- The MITRE Corporation
- Logicon Sterling Software, Inc.
- National Aeronautics and Space Administration (NASA)
- National Imagery and Mapping Agency (NIMA)
- Naval Air Warfare Center Training Systems Division (NAWC / TSD)
- Naval Oceanographic Office (NAVOCEANO)
- Naval Research Laboratory (NRL)
- SRI International
- U.S. Air Force Combat Climatology Center (AFCCC)
- U.S. Army Engineer Research and Development Command (ERDC) Topographic Engineering Center (TEC)
- U.S. Army Simulation Training and Instrumentation Command (STRICOM)
Supporting Organizations & Programs

- AEGis Technologies Group, Inc.
- Armed Forces Training Systems, Inc. (AFTS)
- Combined Arms Tactical Trainers (CATT)
- Defense Advanced Research Projects Agency (DARPA)
- Defense Modeling and Simulation Office (DMSO)
- Distributed Simulation Technology, Inc. (DiSTI)
- Joint Modeling & Simulation System, Joint Program Office (JMASS / JPO)
- Joint Simulation System, Joint Program Office (JSIMS/JPO)
- Joint Strike Fighter, Joint Program Office (JSF / JPO)
- Quantum Research International
- U.K. Combined Arms Tactical Trainer (UKCATT)
- U.S. Air Force Weather Agency (AFWA)
- U.S. Army Model and Simulation Office (AMSO)
- Virtual Emergency Response Training System (VERTS)
... other Participants / Contributors

• **Government Organizations:**
 - *Defence Science and Technical Laboratory (DSTL) (United Kingdom)*
 - *Defence Science and Technology Organisation (DSTO) (Australia)*
 - *Netherlands Organization for Applied Scientific Research (TNO) (Netherlands)*
 - *Defence Research Establishment (Sweden)*
 - *Ministry of Defence (MoD) (Singapore)*
 - *NATO Command, Control, and Consultative Agency (NC3A)*

• **International Membership Organizations:**
 - *ISO and ISO / IEC Technical Committees and Sub-Committees*
 - *Open Geographic Information Systems (GIS) Consortium (OGC)*
 - *Digital Geographic Information Working Group (DGIWG)*
 - *Simulation Interoperability Standards Organization (SISO)*
 - *NATO (M&S Coordination Office, M&S Group, and Armaments Groups)*
Associate Responsibilities

- Learn to "speak" SEDRIS (the data representation model)
- Monitor and participate in SEDRIS e-mail discussions
- Participate in SEDRIS Associate Meetings (as needed)
- Contribute to the state of the art in SEDRIS
- Provide feedback on SEDRIS technologies
- Educate other SEDRIS team members on their domain-specific issues and topics
- Develop "mapping documents" between their native format (if any) and SEDRIS
- Develop conversion software between their native format (if any) and SEDRIS
- Validate their conversion software (if any) by conducting comparison experiments
- Develop tools, utilities, or applications (as applicable)
- Cooperate and collaborate with other associates on projects of mutual benefit
- Promote SEDRIS and its use
Benefits of being an Associate

- Direct access to advance information on upcoming SEDRIS version additions, changes, or modifications.
- Benefit from interim releases of core technologies that can be used in early prototyping, advance product integration, or inclusion in project-specific milestones prior to the next formal release.
- Access to other associates' software that is releasable and of mutual value.
- Access to prototypes, tools, utilities, converters, and other applications.
- Interaction with others actively working on SEDRIS, including core team members.
- Opportunity to influence and shape the core SEDRIS technologies.
How to become an Associate

- Associate status is granted by the SEDRIS Management Team based on evaluation of the responses to the following questions.
 - What is the interest in becoming an associate?
 - What value is SEDRIS expected to provide the associate?
 - What benefit(s) will the associate offer SEDRIS?
 - What funding resources are expected to cover the associate's work?
 - Who are the primary points of contact and expected performers?
 - How long after start is the associate expecting to remain an active participant?

- The answer to these questions, in the form of a short white paper or proposal, along with any other pertinent information should be sent to: se-mgmt@sedris.org.
Recap

• An unambiguous representation of environmental data
 - Semantics and relationships of data elements
 • Expressed in a data representation model, with an
 • Associated data coding specification
 - All environmental domains

• An efficient interchange of environmental data
 - Promotes sharing and re-use
 - Ease of access and software development (API)
 - Tools and applications

• Undergoing international standardization
 (Your participation is Welcome!)

• Currently in use, rigorously tested

• Powerful representational and interchange technology

• Enabling businesses to succeed and grow
Performance Measures

- Greater number of accessible databases
- More rapid, cost effective access to databases
- Lower development costs through greater reuse
- Increased capability to facilitate rapid response requirements
- Lower life cycle management costs
- Incorporation of the SEDRIS concepts and technology in commercial products
- Agency letters stating adoption of SEDRIS as a way of doing business
- Government stated SEDRIS requirement
- Increase in number of contractors using SEDRIS as a data exchange format
- Monitor customer satisfaction
- MSRR, MEL, etc. requests for SEDRIS as a format for data exchange
- Positive customer feedback through web page and/or surveys
Issues to Consider in Human Behavior Representation / Modeling

• What is the size of the market for human behavior modeling?
• Who are the dominant players?
• What problems are currently faced by the community dealing with human behavior modeling (what is the exact motivation)?
• Separating human behavior representation, human behavior modeling, and human behavior
• Is the separation between models that create or use behavior and “behavior data sets” (e.g. initial conditions, behaviors over a certain time, behavior “animation” (predefined series/sequences of actions)) practiced or at least clear in industry?
Issues to Consider in Human Behavior Representation / Modeling (cont’)

- What does it mean to have “human behavior data” (vs. algorithm)? Is this data “after the fact”?
- What “human behavior data sets” would one share?
- Are there tools or established processes for creating “human behavior data”? Should there be? What should be their requirements for input and output?
- How can/will such new technology be applied to other broader (non-military M&S) business areas? How does aggregate behavior (group, herd) differ from organization behavior, vs. organized behavior?
- Will the development of these technology be limited to military domain? Will technology development be separated from business niche?
- Don’t decision making models (optimized or not) go hand in hand with behavior modeling (2nd and 3rd initiatives for FYxx)?
- ...
What lessons can be used...

- Don’t worry about money!
- Focus on business AND technical needs
- Treat it as product development (life cycle, marketing, engineering, testing, sales, training, evolution, ...)
- Start with a small team of ...
- Establish some guiding axioms
- Worry more about content than process at this stage
- Produce fundamental and strong solutions first
- Keep it practical, but tend to systems engineering too
- Pick a name around then (but be careful, names do last)
- Open it for broader review based on initial strong product
- Document your products
- Involve industry, provide incentives
- Add more (people and technology) to the mix
- Manage the growth (stir carefully), and market appropriately
- Plan for handing it off to industry
Back up / Extra charts
Definitions

- OED: Behavior - way of behaving
- OED: Behave - act or react in a specified way
- “Human Behavior” -
 - Actions, in a given context or situation, that result from processing emotions and reasoning based on reactions to (human) sensory inputs, and are combined with past experiences